Arcana Utils
Submodules
arcana.utils.utils module
Helper functions for the arcana package.
- arcana.utils.utils.align_and_truncate_samples(all_predictions, all_target_data_list)
Align and truncate the samples in the array of predictions and list of targets.
- Parameters:
all_predictions (np.ndarray) – Array of predictions
all_target_data_list (list) – List of targets
- Returns:
truncated_all_predictions (np.ndarray) – Truncated array of predictions
truncated_all_targets (np.ndarray) – Truncated array of targets
- arcana.utils.utils.create_dir(directory)
Checks if a directory is present, if not creates one at the given location :param directory: Location where the directory should be created :type directory: str
- Returns:
str – Location of the directory
- arcana.utils.utils.handle_tensor(obj)
Handle the tensor objects
- Parameters:
obj (torch.Tensor) – tensor object
- arcana.utils.utils.pad_array_to_length(arr, target_length)
Pads an array with NaN values up to the target length.
- arcana.utils.utils.prepare_folder_structure(test_id)
Prepare the folder structure for the results
- Parameters:
test_id (str) – ID of the test
- arcana.utils.utils.prepare_optuna_folder_structure(trial_path)
Prepare the folder structure for the results
- Parameters:
test_id (str) – ID of the test
- arcana.utils.utils.save_optuna_fig(save_path, plot_type)
Save the figure
- Parameters:
save_path (str) – path to the directory
plot_type (str) – type of the plot
- arcana.utils.utils.save_plots(path, name: str | None = None)
Save plots to a directory
- Parameters:
path (str) – path to the directory
name (str, optional) – name of the plot. Defaults to None.
- arcana.utils.utils.save_test_data(model, model_folder, test_data, test_lengths)
Save the test data and the test lengths
- Parameters:
model (torch.nn.Module) – the model
model_folder (str) – the path to the model folder
test_data (torch.Tensor) – the test data
test_lengths (torch.Tensor) – the test lengths
- arcana.utils.utils.standardize_dataset(data: DataFrame) DataFrame
Standardize data
- Parameters:
data (pd.DataFrame) – dataframe with the data
- Returns:
scaled_data (pd.DataFrame) – dataframe with the scaled data
scaler (sklearn.preprocessing.MinMaxScaler) – scaler used to scale the data