Arcana Prediction
Submodules
arcana.prediction.quantile_prediction module
This module contains the class that predicts with the quantile model
- class arcana.prediction.quantile_prediction.QuantilePredictor(arcana_procedure, test_data, pretrained_model)
Bases:
object
Predicting with the quantile model
- apply_correct_exogenous()
Apply the correct exogenous data
- calculate_metrics()
Calculate the metrics of the predictions
- metrics_preparation()
Prepare the metrics for prediction
- plot_analysis(sample_number)
Plot the analysis of the prediction
- Parameters:
sample_number (int) – sample number
- plot_predictions()
Helper function that plots the predictions
- predict_data_preparation(num_steps_to_predict, sample_number, len_available_label)
Prepare the data for prediction
- Parameters:
num_steps_to_predict (int) – number of steps to predict
sample_number (int) – sample number
len_available_label (int) – length of the available sequence
- predict_quantiles(num_steps_to_predict, sample_number, len_available_label)
Predict the quantiles. This function also saves the attention weights and sensitivity scores
- Parameters:
num_steps_to_predict (int) – number of steps to predict
sample_number (int) – sample number
len_available_label (int) – length of the available sequence
- save_attention()
Save the attention weights
- save_metrics()
Helper function that saves the metrics
- save_predictions()
Save the predictions
- save_sensitivity()
Save the sensitivity scores
- save_transformed_predictions()
Helper function that saves the transformed predictions
- transform_predictions_to_numpy()
Helper function that transform the predictions to numpy and to original scale
- arcana.prediction.quantile_prediction.metrics_helper(target_labels, predict_labels)
Helper function that calculates the metrics
- Parameters:
target_labels (numpy array) – target labels
predict_labels (numpy array) – predicted labels
- Returns:
mse_score (float) – mean squared error
rmse_score (float) – root mean squared error
mape_score (float) – mean absolute percentage error
mae_score (float) – mean absolute error