Skip to content

Problem

Problem

Source code in opti/problem.py
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
class Problem:
    def __init__(
        self,
        inputs: ParametersLike,
        outputs: ParametersLike,
        objectives: Optional[ObjectivesLike] = None,
        constraints: Optional[ConstraintsLike] = None,
        output_constraints: Optional[ObjectivesLike] = None,
        f: Optional[Callable] = None,
        models: Optional[ModelsLike] = None,
        data: Optional[DataFrameLike] = None,
        optima: Optional[DataFrameLike] = None,
        name: Optional[str] = None,
        **kwargs,
    ):
        """An optimization problem.

        Args:
            inputs: Input parameters.
            outputs: Output parameters.
            objectives: Optimization objectives. Defaults to minimization.
            constraints: Constraints on the inputs.
            output_constraints: Constraints on the outputs.
            f: Function to evaluate the outputs for given inputs.
                Must have the signature: f(x: pd.DataFrame) -> pd.DataFrame
            data: Experimental data.
            optima: Pareto optima.
            name: Name of the problem.
        """
        self.name = name if name is not None else "Problem"
        self.inputs = inputs if isinstance(inputs, Parameters) else Parameters(inputs)
        self.outputs = (
            outputs if isinstance(outputs, Parameters) else Parameters(outputs)
        )

        if objectives is None:
            self.objectives = Objectives([Minimize(m) for m in self.outputs.names])
        elif isinstance(objectives, Objectives):
            self.objectives = objectives
        else:
            self.objectives = Objectives(objectives)

        if isinstance(constraints, Constraints):
            pass
        elif not constraints:
            constraints = None
        else:
            constraints = Constraints(constraints)
            if len(constraints) == 0:  # no valid constraints
                constraints = None
        self.constraints = constraints

        if isinstance(output_constraints, Objectives) or output_constraints is None:
            self.output_constraints = output_constraints
        else:
            self.output_constraints = Objectives(output_constraints)

        if isinstance(models, Models) or models is None:
            self.models = models
        else:
            self.models = Models(models)

        if f is not None:
            self.f = f

        if isinstance(data, dict):
            data = pd.read_json(json.dumps(data), orient="split")

        if isinstance(optima, dict):
            optima = pd.read_json(json.dumps(optima), orient="split")

        self.set_data(data)
        self.set_optima(optima)
        self.check_problem()
        self.check_models()

    @property
    def n_inputs(self) -> int:
        return len(self.inputs)

    @property
    def n_outputs(self) -> int:
        return len(self.outputs)

    @property
    def n_objectives(self) -> int:
        return len(self.objectives)

    @property
    def n_constraints(self) -> int:
        return 0 if self.constraints is None else len(self.constraints)

    def __repr__(self):
        return self.__str__()

    def __str__(self):
        s = "Problem(\n"
        s += f"name={self.name},\n"
        s += f"inputs={self.inputs},\n"
        s += f"outputs={self.outputs},\n"
        s += f"objectives={self.objectives},\n"
        if self.output_constraints is not None:
            s += f"output_constraints={self.output_constraints},\n"
        if self.constraints is not None:
            s += f"constraints={self.constraints},\n"
        if self.models is not None:
            s += f"models={self.models},\n"
        if self.data is not None:
            s += f"data=\n{self.data.head()}\n"
        if self.optima is not None:
            s += f"optima=\n{self.optima.head()}\n"
        return s + ")"

    @staticmethod
    def from_config(config: dict) -> "Problem":
        """Create a Problem instance from a configuration dict."""
        return Problem(**config)

    def to_config(self) -> dict:
        """Return json-serializable configuration dict."""

        config = {
            "name": self.name,
            "inputs": self.inputs.to_config(),
            "outputs": self.outputs.to_config(),
            "objectives": self.objectives.to_config(),
        }
        if self.output_constraints is not None:
            config["output_constraints"] = self.output_constraints.to_config()
        if self.constraints is not None:
            config["constraints"] = self.constraints.to_config()
        if self.models is not None:
            config["models"] = self.models.to_config()
        if self.data is not None:
            config["data"] = self.data.replace({np.nan: None}).to_dict("split")
        if self.optima is not None:
            config["optima"] = self.optima.replace({np.nan: None}).to_dict("split")
        return config

    @staticmethod
    def from_json(fname: PathLike) -> "Problem":
        """Read a problem from a JSON file."""
        with open(fname, "rb") as infile:
            config = json.loads(infile.read())
        return Problem(**config)

    def to_json(self, fname: PathLike) -> None:
        """Save a problem from a JSON file."""
        with open(fname, "wb") as outfile:
            b = json.dumps(self.to_config(), ensure_ascii=False, separators=(",", ":"))
            outfile.write(b.encode("utf-8"))

    def check_problem(self) -> None:
        """Check if input and output parameters are consistent."""
        # check for duplicate names
        duplicates = set(self.inputs.names).intersection(self.outputs.names)
        if duplicates:
            raise ValueError(f"Parameter name in both inputs and outputs: {duplicates}")

        # check if all objectives refer to an output
        for obj in self.objectives:
            if obj.name not in self.outputs.names:
                raise ValueError(f"Objective refers to unknown parameter: {obj.name}")

    def check_data(self, data: pd.DataFrame) -> None:
        """Check if data is consistent with input and output parameters."""
        for p in self.inputs + self.outputs:
            # data must contain all parameters
            if p.name not in data.columns:
                raise ValueError(
                    f"Parameter {p.name} is missing. Data must contain all parameters."
                )

            # data for continuous / discrete parameters must be numeric
            if isinstance(p, (Continuous, Discrete)):
                ok = is_numeric_dtype(data[p.name]) or data[p.name].isnull().all()
                if not ok:
                    raise ValueError(
                        f"Parameter {p.name} contains non-numeric values. Data for continuous / discrete parameters must be numeric."
                    )

            # categorical levels in data must be specified
            elif isinstance(p, Categorical):
                ok = p.contains(data[p.name]) | data[p.name].isna()
                if not ok.all():
                    unknowns = data[p.name][~ok].unique().tolist()
                    raise ValueError(
                        f"Data for parameter {p.name} contains unknown values: {unknowns}. All categorical levels must be specified."
                    )

        # inputs must be complete
        for p in self.inputs:
            if data[p.name].isnull().any():
                raise ValueError(
                    f"Input parameter {p.name} has missing data. Inputs must be complete."
                )

        # outputs must have at least one observation
        for p in self.outputs:
            if data[p.name].isnull().all():
                raise ValueError(
                    f"Output parameter {p.name} has no data. Outputs must have at least one observation."
                )

    def check_models(self) -> None:
        """Check if the models are well defined"""
        if self.models is None:
            return

        for model in self.models:
            # models need to refer to output parameters
            for n in model.names:
                if n not in self.outputs.names:
                    raise ValueError(f"Model {model} refers to unknown outputs")

            if isinstance(model, LinearModel):
                if len(model.coefficients) != self.n_inputs:
                    raise ValueError(f"Model {model} has wrong number of coefficients.")

    def set_data(self, data: Optional[pd.DataFrame]) -> None:
        """Set the data."""
        if data is not None:
            for p in self.inputs:
                # Categorical levels are required to be strings. Ensure that the corresponding data is as well.
                if isinstance(p, Categorical):
                    nulls = data[p.name].isna()
                    data[p.name] = data[p.name].astype(str).mask(nulls, np.nan)

            self.check_data(data)

        self.data = data

    def get_data(self) -> pd.DataFrame:
        """Return `self.data` if it exists or an empty dataframe."""
        if self.data is None:
            return pd.DataFrame(columns=self.inputs.names + self.outputs.names)
        return self.data

    def add_data(self, data: pd.DataFrame) -> None:
        """Add a number of data points."""
        self.check_data(data)
        self.data = pd.concat([self.data, data], axis=0)

    def set_optima(self, optima: Optional[pd.DataFrame]) -> None:
        """Set the optima / Pareto front."""
        if optima is not None:
            self.check_data(optima)
        self.optima = optima

    def get_X(self, data: Optional[pd.DataFrame] = None) -> np.ndarray:
        """Return the input values in `data` or `self.data`."""
        if data is not None:
            return data[self.inputs.names].values
        return self.get_data()[self.inputs.names].values

    def get_Y(self, data: Optional[pd.DataFrame] = None) -> np.ndarray:
        """Return the output values in `data` or `self.data`."""
        if data is not None:
            return data[self.outputs.names].values
        return self.get_data()[self.outputs.names].values

    def get_XY(
        self,
        outputs: Optional[List[str]] = None,
        data: Optional[pd.DataFrame] = None,
        continuous: str = "none",
        discrete: str = "none",
        categorical: str = "none",
    ) -> Tuple[np.ndarray, np.ndarray]:
        """Return the input and output values as numeric numpy arrays.

        Rows with missing output values will be dropped.
        Input values are assumed to be complete.
        Categorical outputs are one-hot or label encoded.

        Args:
            outputs (optional): Subset of the outputs to consider.
            data (optional): Dataframe to consider instead of problem.data
        """
        if outputs is None:
            outputs = self.outputs.names
        if data is None:
            data = self.get_data()
        notna = data[outputs].notna().all(axis=1)
        X = self.inputs.transform(
            data, continuous=continuous, discrete=discrete, categorical=categorical
        )[notna].values
        Y = data[outputs][notna].values
        return X, Y

    def get_X_bounds(self) -> Tuple[np.ndarray, np.ndarray]:
        """Return the lower and upper data bounds."""
        X = self.get_X()
        xlo = X.min(axis=0)
        xhi = X.max(axis=0)
        b = xlo == xhi
        xhi[b] = xlo[b] + 1  # prevent division by zero when dividing by (xhi - xlo)
        return xlo, xhi

    def sample_inputs(self, n_samples=10) -> pd.DataFrame:
        """Uniformly sample points from the input space subject to the constraints."""
        if self.constraints is None:
            return sobol_sampling(n_samples, self.inputs)
        return constrained_sampling(n_samples, self.inputs, self.constraints)

    def create_initial_data(self, n_samples: int = 10) -> None:
        """Create an initial data set for benchmark problems by sampling uniformly from the input space and evaluating f(x) at the sampled inputs."""
        if self.f is None:
            raise NotImplementedError("problem.f is not implemented for the problem.")
        X = self.sample_inputs(n_samples)
        Y = self.f(X)
        self.data = pd.concat([X, Y], axis=1)

__init__(inputs, outputs, objectives=None, constraints=None, output_constraints=None, f=None, models=None, data=None, optima=None, name=None, **kwargs)

An optimization problem.

Parameters:

Name Type Description Default
inputs ParametersLike

Input parameters.

required
outputs ParametersLike

Output parameters.

required
objectives Optional[ObjectivesLike]

Optimization objectives. Defaults to minimization.

None
constraints Optional[ConstraintsLike]

Constraints on the inputs.

None
output_constraints Optional[ObjectivesLike]

Constraints on the outputs.

None
f Optional[Callable]

Function to evaluate the outputs for given inputs. Must have the signature: f(x: pd.DataFrame) -> pd.DataFrame

None
data Optional[DataFrameLike]

Experimental data.

None
optima Optional[DataFrameLike]

Pareto optima.

None
name Optional[str]

Name of the problem.

None
Source code in opti/problem.py
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
def __init__(
    self,
    inputs: ParametersLike,
    outputs: ParametersLike,
    objectives: Optional[ObjectivesLike] = None,
    constraints: Optional[ConstraintsLike] = None,
    output_constraints: Optional[ObjectivesLike] = None,
    f: Optional[Callable] = None,
    models: Optional[ModelsLike] = None,
    data: Optional[DataFrameLike] = None,
    optima: Optional[DataFrameLike] = None,
    name: Optional[str] = None,
    **kwargs,
):
    """An optimization problem.

    Args:
        inputs: Input parameters.
        outputs: Output parameters.
        objectives: Optimization objectives. Defaults to minimization.
        constraints: Constraints on the inputs.
        output_constraints: Constraints on the outputs.
        f: Function to evaluate the outputs for given inputs.
            Must have the signature: f(x: pd.DataFrame) -> pd.DataFrame
        data: Experimental data.
        optima: Pareto optima.
        name: Name of the problem.
    """
    self.name = name if name is not None else "Problem"
    self.inputs = inputs if isinstance(inputs, Parameters) else Parameters(inputs)
    self.outputs = (
        outputs if isinstance(outputs, Parameters) else Parameters(outputs)
    )

    if objectives is None:
        self.objectives = Objectives([Minimize(m) for m in self.outputs.names])
    elif isinstance(objectives, Objectives):
        self.objectives = objectives
    else:
        self.objectives = Objectives(objectives)

    if isinstance(constraints, Constraints):
        pass
    elif not constraints:
        constraints = None
    else:
        constraints = Constraints(constraints)
        if len(constraints) == 0:  # no valid constraints
            constraints = None
    self.constraints = constraints

    if isinstance(output_constraints, Objectives) or output_constraints is None:
        self.output_constraints = output_constraints
    else:
        self.output_constraints = Objectives(output_constraints)

    if isinstance(models, Models) or models is None:
        self.models = models
    else:
        self.models = Models(models)

    if f is not None:
        self.f = f

    if isinstance(data, dict):
        data = pd.read_json(json.dumps(data), orient="split")

    if isinstance(optima, dict):
        optima = pd.read_json(json.dumps(optima), orient="split")

    self.set_data(data)
    self.set_optima(optima)
    self.check_problem()
    self.check_models()

add_data(data)

Add a number of data points.

Source code in opti/problem.py
262
263
264
265
def add_data(self, data: pd.DataFrame) -> None:
    """Add a number of data points."""
    self.check_data(data)
    self.data = pd.concat([self.data, data], axis=0)

check_data(data)

Check if data is consistent with input and output parameters.

Source code in opti/problem.py
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
def check_data(self, data: pd.DataFrame) -> None:
    """Check if data is consistent with input and output parameters."""
    for p in self.inputs + self.outputs:
        # data must contain all parameters
        if p.name not in data.columns:
            raise ValueError(
                f"Parameter {p.name} is missing. Data must contain all parameters."
            )

        # data for continuous / discrete parameters must be numeric
        if isinstance(p, (Continuous, Discrete)):
            ok = is_numeric_dtype(data[p.name]) or data[p.name].isnull().all()
            if not ok:
                raise ValueError(
                    f"Parameter {p.name} contains non-numeric values. Data for continuous / discrete parameters must be numeric."
                )

        # categorical levels in data must be specified
        elif isinstance(p, Categorical):
            ok = p.contains(data[p.name]) | data[p.name].isna()
            if not ok.all():
                unknowns = data[p.name][~ok].unique().tolist()
                raise ValueError(
                    f"Data for parameter {p.name} contains unknown values: {unknowns}. All categorical levels must be specified."
                )

    # inputs must be complete
    for p in self.inputs:
        if data[p.name].isnull().any():
            raise ValueError(
                f"Input parameter {p.name} has missing data. Inputs must be complete."
            )

    # outputs must have at least one observation
    for p in self.outputs:
        if data[p.name].isnull().all():
            raise ValueError(
                f"Output parameter {p.name} has no data. Outputs must have at least one observation."
            )

check_models()

Check if the models are well defined

Source code in opti/problem.py
228
229
230
231
232
233
234
235
236
237
238
239
240
241
def check_models(self) -> None:
    """Check if the models are well defined"""
    if self.models is None:
        return

    for model in self.models:
        # models need to refer to output parameters
        for n in model.names:
            if n not in self.outputs.names:
                raise ValueError(f"Model {model} refers to unknown outputs")

        if isinstance(model, LinearModel):
            if len(model.coefficients) != self.n_inputs:
                raise ValueError(f"Model {model} has wrong number of coefficients.")

check_problem()

Check if input and output parameters are consistent.

Source code in opti/problem.py
176
177
178
179
180
181
182
183
184
185
186
def check_problem(self) -> None:
    """Check if input and output parameters are consistent."""
    # check for duplicate names
    duplicates = set(self.inputs.names).intersection(self.outputs.names)
    if duplicates:
        raise ValueError(f"Parameter name in both inputs and outputs: {duplicates}")

    # check if all objectives refer to an output
    for obj in self.objectives:
        if obj.name not in self.outputs.names:
            raise ValueError(f"Objective refers to unknown parameter: {obj.name}")

create_initial_data(n_samples=10)

Create an initial data set for benchmark problems by sampling uniformly from the input space and evaluating f(x) at the sampled inputs.

Source code in opti/problem.py
329
330
331
332
333
334
335
def create_initial_data(self, n_samples: int = 10) -> None:
    """Create an initial data set for benchmark problems by sampling uniformly from the input space and evaluating f(x) at the sampled inputs."""
    if self.f is None:
        raise NotImplementedError("problem.f is not implemented for the problem.")
    X = self.sample_inputs(n_samples)
    Y = self.f(X)
    self.data = pd.concat([X, Y], axis=1)

from_config(config) staticmethod

Create a Problem instance from a configuration dict.

Source code in opti/problem.py
137
138
139
140
@staticmethod
def from_config(config: dict) -> "Problem":
    """Create a Problem instance from a configuration dict."""
    return Problem(**config)

from_json(fname) staticmethod

Read a problem from a JSON file.

Source code in opti/problem.py
163
164
165
166
167
168
@staticmethod
def from_json(fname: PathLike) -> "Problem":
    """Read a problem from a JSON file."""
    with open(fname, "rb") as infile:
        config = json.loads(infile.read())
    return Problem(**config)

get_X(data=None)

Return the input values in data or self.data.

Source code in opti/problem.py
273
274
275
276
277
def get_X(self, data: Optional[pd.DataFrame] = None) -> np.ndarray:
    """Return the input values in `data` or `self.data`."""
    if data is not None:
        return data[self.inputs.names].values
    return self.get_data()[self.inputs.names].values

get_XY(outputs=None, data=None, continuous='none', discrete='none', categorical='none')

Return the input and output values as numeric numpy arrays.

Rows with missing output values will be dropped. Input values are assumed to be complete. Categorical outputs are one-hot or label encoded.

Parameters:

Name Type Description Default
outputs optional

Subset of the outputs to consider.

None
data optional

Dataframe to consider instead of problem.data

None
Source code in opti/problem.py
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
def get_XY(
    self,
    outputs: Optional[List[str]] = None,
    data: Optional[pd.DataFrame] = None,
    continuous: str = "none",
    discrete: str = "none",
    categorical: str = "none",
) -> Tuple[np.ndarray, np.ndarray]:
    """Return the input and output values as numeric numpy arrays.

    Rows with missing output values will be dropped.
    Input values are assumed to be complete.
    Categorical outputs are one-hot or label encoded.

    Args:
        outputs (optional): Subset of the outputs to consider.
        data (optional): Dataframe to consider instead of problem.data
    """
    if outputs is None:
        outputs = self.outputs.names
    if data is None:
        data = self.get_data()
    notna = data[outputs].notna().all(axis=1)
    X = self.inputs.transform(
        data, continuous=continuous, discrete=discrete, categorical=categorical
    )[notna].values
    Y = data[outputs][notna].values
    return X, Y

get_X_bounds()

Return the lower and upper data bounds.

Source code in opti/problem.py
314
315
316
317
318
319
320
321
def get_X_bounds(self) -> Tuple[np.ndarray, np.ndarray]:
    """Return the lower and upper data bounds."""
    X = self.get_X()
    xlo = X.min(axis=0)
    xhi = X.max(axis=0)
    b = xlo == xhi
    xhi[b] = xlo[b] + 1  # prevent division by zero when dividing by (xhi - xlo)
    return xlo, xhi

get_Y(data=None)

Return the output values in data or self.data.

Source code in opti/problem.py
279
280
281
282
283
def get_Y(self, data: Optional[pd.DataFrame] = None) -> np.ndarray:
    """Return the output values in `data` or `self.data`."""
    if data is not None:
        return data[self.outputs.names].values
    return self.get_data()[self.outputs.names].values

get_data()

Return self.data if it exists or an empty dataframe.

Source code in opti/problem.py
256
257
258
259
260
def get_data(self) -> pd.DataFrame:
    """Return `self.data` if it exists or an empty dataframe."""
    if self.data is None:
        return pd.DataFrame(columns=self.inputs.names + self.outputs.names)
    return self.data

sample_inputs(n_samples=10)

Uniformly sample points from the input space subject to the constraints.

Source code in opti/problem.py
323
324
325
326
327
def sample_inputs(self, n_samples=10) -> pd.DataFrame:
    """Uniformly sample points from the input space subject to the constraints."""
    if self.constraints is None:
        return sobol_sampling(n_samples, self.inputs)
    return constrained_sampling(n_samples, self.inputs, self.constraints)

set_data(data)

Set the data.

Source code in opti/problem.py
243
244
245
246
247
248
249
250
251
252
253
254
def set_data(self, data: Optional[pd.DataFrame]) -> None:
    """Set the data."""
    if data is not None:
        for p in self.inputs:
            # Categorical levels are required to be strings. Ensure that the corresponding data is as well.
            if isinstance(p, Categorical):
                nulls = data[p.name].isna()
                data[p.name] = data[p.name].astype(str).mask(nulls, np.nan)

        self.check_data(data)

    self.data = data

set_optima(optima)

Set the optima / Pareto front.

Source code in opti/problem.py
267
268
269
270
271
def set_optima(self, optima: Optional[pd.DataFrame]) -> None:
    """Set the optima / Pareto front."""
    if optima is not None:
        self.check_data(optima)
    self.optima = optima

to_config()

Return json-serializable configuration dict.

Source code in opti/problem.py
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
def to_config(self) -> dict:
    """Return json-serializable configuration dict."""

    config = {
        "name": self.name,
        "inputs": self.inputs.to_config(),
        "outputs": self.outputs.to_config(),
        "objectives": self.objectives.to_config(),
    }
    if self.output_constraints is not None:
        config["output_constraints"] = self.output_constraints.to_config()
    if self.constraints is not None:
        config["constraints"] = self.constraints.to_config()
    if self.models is not None:
        config["models"] = self.models.to_config()
    if self.data is not None:
        config["data"] = self.data.replace({np.nan: None}).to_dict("split")
    if self.optima is not None:
        config["optima"] = self.optima.replace({np.nan: None}).to_dict("split")
    return config

to_json(fname)

Save a problem from a JSON file.

Source code in opti/problem.py
170
171
172
173
174
def to_json(self, fname: PathLike) -> None:
    """Save a problem from a JSON file."""
    with open(fname, "wb") as outfile:
        b = json.dumps(self.to_config(), ensure_ascii=False, separators=(",", ":"))
        outfile.write(b.encode("utf-8"))

read_json(filepath)

Read a problem specification from a JSON file.

Source code in opti/problem.py
338
339
340
def read_json(filepath: PathLike) -> Problem:
    """Read a problem specification from a JSON file."""
    return Problem.from_json(filepath)